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Abstract. Scenarios, or Message Sequence Charts, offer an intuitive
way of describing the desired behaviors of a distributed protocol. In this
paper we propose a new way of specifying and synthesizing finite-state
protocols using scenarios: we show that it is possible to automatically
derive a distributed implementation from a set of scenarios augmented
with a set of safety and liveness requirements, provided the given scenarios
adequately cover all the states of the desired implementation. We first
derive incomplete state machines from the given scenarios, and then
synthesis corresponds to completing the transition relation of individual
processes so that the global product meets the specified requirements. This
completion problem, in general, has the same complexity, PSPACE, as
the verification problem, but unlike the verification problem, is still hard
(NP-complete) even for a constant number of processes. We present an
algorithm for solving the completion problem, based on counterexample-
guided inductive synthesis. We evaluate the proposed methodology for
protocol specification and the effectiveness of the synthesis algorithm using
the classical alternating-bit protocol, the VI cache-coherence protocol,
and a consensus protocol.

1 Introduction

In formal verification, a system model is checked against correctness requirements
to find bugs. Sustained research in improving verification tools over the last few
decades has resulted in powerful heuristics for coping with the computational
intractability of problems such as Boolean satisfiability and search through the
state-space of concurrent processes. The advances in these analysis tools now
offer an opportunity to develop new methodologies for system design that allow
a programmer to specify a system in more intuitive ways. In this paper, we focus
on distributed protocols: the multitude of behaviors arising due to asynchronous
concurrency makes the design of such protocols difficult, and the benefits of
using model checkers to debug such protocols have been clearly demonstrated.
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Expeditions in Computer Augmented Program Engineering. This work was also
partially supported by IBM and United Technologies Corporation (UTC) via the
iCyPhy consortium.



Traditionally, a distributed protocol is described using communicating finite-state
machines (FSMs). The goal of this paper is to develop a methodology aimed at
simplifying the task of designing them.

An intuitive way of specifying the desired behaviors of a protocol is by sce-
narios, where each scenario describes an expected sequence of message exchanges
among participating processes. Such scenarios are used in textbooks and class-
rooms to describe the protocol and can be specified using the intuitive visual
notation of Message Sequence Charts. In fact, the MSC notation is standardized
by IEEE [1], and it is supported by some system development environments as
design supplements. These observations raise the question: is it plausible to ask
the designer to provide enough scenarios so that the protocol implementation
can be automatically synthesized? Although one cannot expect a designer to
provide scenarios that include all the possible behaviors, our key observation is
that even a representative set of scenarios covers all the states of the desired
implementation. The (local) states of a process are obtained from a scenario —
using the explicit state-labels that appear as annotations as well as from the
histories of events in which the process participates. If we consider all the states
and the input/output transitions out of these states for a given process that
appear in the given set of scenarios, we obtain a skeleton of the desired FSM
implementation of that process. The synthesis problem now corresponds to com-
pleting this skeleton by adding transitions. This requires the synthesizer to infer,
for instance, how to respond to a particular input event in a particular state even
when this information is missing from the specified scenarios. The more such
completions that the synthesizer can learn successfully, the lower the burden
on the designer to specify details of each and every case. To rule out incorrect
completions, we ask the designer to provide a model of the environment and
correctness requirements. Some requirements such as absence of deadlocks can
be generic to all the protocols, whereas other requirements can be specific to
the coordination problem being solved by the protocol and given as finite-state
monitors for safety and liveness properties in the form commonly used in model
checkers. Note that scenarios and correctness requirements are used as under-
and over-approximations of the behaviors of the protocol, respectively.

The synthesis problem then maps to the following protocol completion problem:
given (1) a set of FSMs with incomplete transition functions, (2) a model of the
environment, and (3) a set of safety/liveness requirements, find a completion of
the FSMs such that the composition satisfies all the requirements. We show this
problem, similar to the model checking problem, to be Pspace-complete, but,
unlike the model checking problem, to be NP-hard even for just one process. We
present an algorithm for solving the protocol completion problem. The algorithm
is an example of counterexample-guided synthesis [2]: candidates from the search
space of completions are evaluated with respect to requirements and violations
of the correctness requirements are used to prune the space.

To evaluate our methodology, we first consider the Alternating Bit Protocol
(ABP), a classical solution to provide reliable transmission over unreliable channels.
The canonical description of the protocol uses four scenarios to explain its
behavior [3]. It turns out that the first scenario corresponding to the typical

2



behavior contains a representative of each local state of both the sender and
receiver processes. Our algorithm for protocol completion is able to find a correct
implementation from just one scenario, and thus, automatically learn how to
cope with message losses and message duplications. We vary the input, both in
terms of the set of scenarios and the set of correctness requirements, and study
how it affects the computational requirements and the ability to learn the correct
protocol. We also evaluate the effectiveness of scenarios on two other protocols: a
cache coherence protocol and a distributed consensus protocol. In both cases, as
in ABP, the scenarios produce automata that cover all the states of a desired
implementation and our algorithm is able to synthesize the missing behaviors in
a reasonable amount of time.

Related Work

Our work builds on techniques and tools for model checking [4] and also on the
rich literature for formal modeling and verification of distributed protocols [5].

The problem of deriving finite-state implementations from formal requirements
specified, for instance, in temporal logic, is called reactive synthesis, and has been
studied extensively [6–8]. When the implementation is required to be distributed,
the problem is known to be undecidable [9–12]. In bounded synthesis, one fixes a
bound on the number of states of the implementation, and this allows algorithmic
solutions to distributed synthesis [13]. Another approach uses genetic programming
combined with model checking, to search through protocol implementations to
find a correct one, which has been shown to be effective in synthesizing protocols
such as leader election [14, 15].

Specifying a reactive system using example scenarios has also a long tradition.
In particular, the problem of deriving an implementation that exhibits at least the
behaviors specified by a given set of scenarios is well-studied (see, for instance, [16–
18]). A particularly well-developed approach is behavioral programming [19] that
builds on the work on an extension of message sequence charts, called live sequence
charts [20], and has been shown to be effective for specifying the behavior of
a single controller reacting with its environment. The work in [21] generalizes
Angluin’s learning algorithm to synthesize automata from MSCs but does not
allow for the specification of requirements and relies on the programmer to answer
classification and equivalence queries. More recently, scenarios — in the form
of “flows” — have been used in the modular verification of cache coherence
protocols [22].

Our approach of using both the scenarios and the requirements in an inte-
grated manner and using scenarios to derive incomplete state machines offers a
conceptually new methodology compared to the existing work. We are inspired
by recent work on program sketching [23, 2] and on protocol specification [24].
PSKETCH [2] uses similar techniques but targets concurrent data structures
and is limited to safety properties. Compared to Transit [24] in this paper we
limit ourselves to finite-state protocols but consider both safety and liveness
requirements and provide a fully automatic synthesis procedure.

The protocol completion problem itself has conceptual similarities to problems
such as program repair studied in the literature [25], but differs in technical details.
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2 Methodology

We explain our methodology by illustrating it on an example, the well-known
Alternating Bit Protocol (ABP). The ABP protocol ensures reliable message
transmission over unreliable channels which can duplicate or lose messages. As
input to the synthesis tool the user provides the following:

– The protocol skeleton: this is a set of processes which are to be synthesized,
and for each process, the interface of that process, i.e., its inputs and outputs.

– The environment : this is a set of processes which are known and fixed, that
is, are not to be synthesized nor modified in any way by the synthesizer. The
environment processes interact with the protocol processes and the product
of all these processes forms a closed system, which can be model-checked
against a formal specification.

– A specification: this is a set of formal requirements. These can be expressed
in different ways, e.g., as temporal logic formulas, safety or liveness (e.g.,
Büchi) monitors, or “hardwired” properties such as absence of deadlock.

– A set of scenarios: these are example behaviors of the system. In our frame-
work, a scenario is a type of message sequence chart (MSC).

In the case of the ABP example, the above inputs are as follows. The overall
system is shown in Figure 1. The protocol skeleton consists of the two unknown
processes ABP Sender and ABP Receiver. Their interfaces are shown in the
figure, e.g., ABP Sender has inputs a′0, a′1, and timeout and outputs send, p0, and
p1. The environment processes are: Forward Channel (FC) (from ABP Sender
to ABP Receiver, duplicating and lossy), Backward Channel (BC) (from ABP
Receiver to ABP Sender, also duplicating and lossy), Timer (sends timeout
messages to ABP Sender), Safety Monitor, and a set of Liveness Monitors.

As specification for ABP we will use the following requirements: (1) deadlock-
freedom, i.e., absence of reachable global deadlock states (in the product system)
(2) safety, captured using safety monitors, which guarantee that send and deliver
messages alternate (3) Büchi liveness monitors, which accept incorrect infinite
executions in which either a send message is not followed by a deliver, a deliver
is not followed by a send, or a send never appears, provided that the channels
are fair and that the processes do not indefinitely ignore input messages.

We will use the four message sequence charts shown in Figure 2 to describe
the behavior of the ABP protocol. They come from a textbook on computer
networking [3]. The first scenario describes the behavior of the protocol when
no packets or acknowledgments are lost or duplicated. The second and the third
scenarios correspond to the expected behaviors of the protocol in the event of the
loss of a packet and in the event of the loss of an acknowledgment respectively.
Finally, the fourth scenario describes the behavior of ABP on premature timeouts
and/or packet duplication.

A candidate solution to the ABP synthesis problem is a pair of processes,
one for the ABP Sender and one for the ABP Receiver. Such a candidate is a
valid solution if: (a) the two processes respect their I/O interface and satisfy
some additional requirements such as determinism (these are defined formally in
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Fig. 2. Four scenarios for the alternating-bit protocol. From left to right: No loss, Lost
packet, Lost ACK, Premature timeout/duplication.

Section 3.1), (b) the overall ABP system (product of all processes) may exhibit
each of the input scenarios, and (c) it satisfies all correctness requirements.

Figure 3 shows for the ABP sender automaton, on the left, a manually
constructed solution, and on the right, the output of the synthesis algorithm, when
invoked with the requirements mentioned above and only the first scenario from
Figure 2. It can be checked that the two instances of the ABP sender automaton
are “similar” in the sense that they satisfy the same intuitive properties that
one expects from the ABP protocol. In particular, the computed solution differs
from the manual one in that it eagerly re-transmits p0 when an unexpected
acknowledgment a′1 is received. This might incur additional traffic but satisfies all
the safety and liveness properties for the ABP protocol. The computed solution
for the ABP Receiver is the same as the manually constructed automaton.
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Fig. 3. ABP Sender “manual” solution (left) and solution computed by the synthesis
algorithm using only the first scenario (right).

3 The Automata Completion Problem

We now describe how the problem described in Section 2 can be viewed as a
problem of completing the transition relations of finite IO automata.

3.1 Finite-state Input-Output Automata

A finite-state input-output automaton is a tuple A = (Q, q0, I, O, T,Of ) where Q
is a finite set of states, q0 ∈ Q is the initial state, I is a finite (possibly empty)
set of inputs, O is a finite (possibly empty) set of outputs, with I ∩ O = ∅,
T ⊆ Q × (I ∪ O) × Q is a finite set of transitions,4 and Of ⊆ O is a (possibly
empty) set of outputs representing a fairness constraint.

We write a transition (q, x, q′) ∈ T as q
x?→ q′ when x ∈ I, and as q

x!→ q′ when
x ∈ O. We write q → q′ if there exists x such that (q, x, q′) ∈ T . A transition
labeled with x ∈ I (respectively, x ∈ O) is called an input transition (respectively,
an output transition).

A state q ∈ Q is called a deadlock if it has no outgoing transitions. q is
called an input state if it has at least one outgoing transition, and all outgoing
transitions from q are input transitions. q is called an output state if it has a
single outgoing transition, which is an output transition.

Automaton A is called deterministic if for every state q ∈ Q, if there are
multiple outgoing transitions from q, then all these transitions must be labeled
with distinct inputs. Determinism implies that every state q ∈ Q is a deadlock,
an input state, or an output state. Automaton A is called closed if I = ∅.

A safety monitor is an automaton equipped with a set of error states Qe,
A = (Q, q0, I, O, T,Of , Qe). A liveness monitor is an automaton equipped with a
set of accepting states Qa, A = (Q, q0, I, O, T,Of , Qa). A monitor could be both
safety and liveness, in which case it is a tuple A = (Q, q0, I, O, T,Of , Qe, Qa).

A run of an automaton A is a finite or infinite sequence of transitions starting
from the initial state: q0 → q1 → q2 → · · · . A state q is called reachable if there
exists a finite run reaching that state: q0 → q1 → · · · → q. A safety monitor is
called safe if it has no reachable error states. An infinite run of a liveness monitor

4 The framework and synthesis algorithms can easily be extended to handle internal
transitions as well, but we suppress this detail for simplicity of presentation.

6



se
n
d?

p0! a′
0? se

n
d?

p1! a′
1? se

n
d?

p0! a′
0?

timeout?
p1! a′

1? se
n
d?

p0! a′
0?

a′
1?

a′
0?

Fig. 4. Incomplete protocol automaton for ABP Sender using all scenarios from Figure 2,
without using symmetric scenarios or labels.

is called accepting if it visits accepting states infinitely often. An infinite run
is called fair, if for every o ∈ Of , if it infinitely often visits some state q such
that o ∈ {x | (q, x, q′) ∈ T} (o is “enabled” at q), then it makes a transition with
output o infinitely often.5 A liveness monitor is called empty if it has no infinite
accepting fair runs.

3.2 Composition

We define an asynchronous (interleaving-based) parallel composition operator with
rendezvous synchronization. Given two automata A1 = (Q1, q0,1, I1, O1, T1, Of,1)
and A2 = (Q2, q0,2, I2, O2, T2, Of,2), the composition of A1 and A2, denoted
A1‖A2, is defined, provided O1 ∩O2 = ∅, as the automaton

A1‖A2 =̂ (Q1 ×Q2, (q0,1, q0,2), (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2, T,Of,1 ∪Of,2)

where ((q1, q2), x, (q′1, q
′
2)) ∈ T iff one of the following holds:

– x ∈ O1 and q1
x!→ q′1 and either x ∈ I2 and q2

x?→ q′2 or x 6∈ I2 and q′2 = q2.

– x ∈ O2 and q2
x!→ q′2 and either x ∈ I1 and q1

x?→ q′1 or x 6∈ I1 and q′1 = q1.
– x ∈ (I1∪ I2)\ (O1∪O2) and at least one of the following holds: (1) x ∈ I1 \ I2

and q1
x?→ q′1 and q′2 = q2, (2) x ∈ I2 \ I1 and q2

x?→ q′2 and q′1 = q1, (3)

x ∈ I1 ∩ I2 and q1
x?→ q′1 and q2

x?→ q′2.

During composition, the product automaton A1‖A2 “inherits” the safety and
liveness properties of each of its components. Specifically, a product state (q1, q2)
is an error state if either q1 or q2 are error states. A product state (q1, q2) is an
accepting state if either q1 or q2 is an accepting state.

Note that ‖ is commutative and associative. So we can write A1‖A2‖ · · · ‖An
without parentheses, for a set of n automata.

3.3 From Scenarios to Incomplete Automata

The first step in our synthesis method is to automatically generate from the set
of input scenarios an incomplete automaton for each protocol process. The second

5 Of the many notions of fairness which are discussed in literature, we have chosen one
notion of fairness that is adequate for the case studies in this paper. Our approach
can be extended to more general forms of fairness assumptions.
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step is then to complete these incomplete automata to derive a complete protocol.
In the sections that follow, we formalize and study the automata completion
problem. In this section, we illustrate the first step of going from scenarios to
incomplete automata, by means of the ABP example.

The idea for transforming scenarios into incomplete automata is simple. First,
for every “swim lane” in the message sequence chart corresponding to a given
scenario, we identify the corresponding automaton in the overall system. For
example, in each scenario shown in Figure 2, the left-most lane corresponds to
ABP Sender and the right-most lane to ABP Receiver. These scenarios omit the
environment processes for simplicity. In particular channel processes are omitted,
however, we will use a primed version of a message when referencing it on the
process that receives it.

Second, for every protocol process P , we generate an incomplete automaton
AP as follows. For every message history ρ (ρ is a finite sequence of messages
received or sent by the process) specified in some scenario in the lane for P , we
create a state sρ in AP . If ρ′ = ρ ·x is an extension of history ρ by one message x,

then there is a transition sρ
x→ sρ′ in AP . At this point, we check that the inputs

and outputs of AP are included in the interface of P in the protocol skeleton and
that AP is deterministic. Applying this procedure to the scenarios in Figure 2,
we obtain the incomplete automaton shown in Figure 4 for the ABP Sender.

Third, scenarios are annotated with labels. As shown in the first scenario of
Figure 2, labels appear between messages on swim lanes. These are used to merge
the states that correspond to message histories that are followed by the same
label. Merging occurs for states of a single scenario as well as across multiple
ones if the same label is used in different scenarios. If consistent labels are given
to the initial and final positions in all swim lanes of the scenarios the resulting
incomplete automata can be made cyclic. Furthermore, labels are essential for
specifying recurring behaviors in scenarios and the structure of the incomplete
automaton depends on the number and positions of labels used.

Finally, it is often the case that different behaviors of a system are equivalent
up to simple replacement of messages. For example, all the ABP scenarios express
valid behaviors if p0 and a0 messages are consistently replaced with p1 and a1
messages respectively and vice-versa. Thus, our framework allows for scenarios
to be characterized as “symmetric”.

We annotate the swim lanes of the ABP Sender scenarios of Figure 2 with
“before sending 0” and “before sending 1” labels, and the swim lanes of the ABP
Receiver with “before receiving 0” and “before receiving 1” labels. We also add
the symmetric scenarios by switching 0 messages with 1 messages. The resulting
incomplete automaton for ABP Sender is shown in Figure 5.

3.4 Automata Completion

Having transformed the input scenarios into incomplete automata, the next step
is to complete those automata by adding the appropriate transitions, so as to
synthesize a complete and correct protocol. In this section we formalize this
completion problem. We define two versions of the problem: a special version
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with only a single incomplete automaton and a general version. In Section 4.1 we
show that these problems are combinatorially hard.

Consider an automaton A = (Q, q0, I, O, T ). Given a set of transitions T ′ ⊆
Q × (I ∪ O) × Q, the completion of A with T ′ is the new automaton A′ =
(Q, q0, I, O, T ∪ T ′).

Problem 1. Given automaton E (the environment) and deterministic automaton
P (the process) such that E‖P is defined, find a set of transitions T such that,
if P ′ is the completion of P with T , then P ′ is deterministic and E‖P ′ has no
reachable deadlock states.

Note that if E‖P is defined then E‖P ′ is also defined, because, by definition,
completion does not modify the interface (inputs and outputs) of an automaton.

Problem 2. Given a set of environment automata E1, ..., Em (some of which can
be safety or liveness monitors), and a set of deterministic process automata
P1, ..., Pn such that E1‖ · · · ‖Em‖P1‖ · · · ‖Pn is defined, find sets of transitions
T1, ..., Tn such that, if P ′

i is the completion of Pi with Ti, then for i = 1, ..., n,

– P ′
i is deterministic, for i = 1, ..., n,

– if the product automaton Π := E1‖ · · · ‖Em‖P ′
1‖ · · · ‖P ′

n is a safety automaton
then it is safe,

– if Π is a liveness automaton then it is empty,
– and, Π has no reachable deadlock states.

4 Solving Automata Completion

In this section, we first show that Problems 1 and 2 are NP-complete and
PSPACE-complete respectively. We then present a synthesis algorithm to solve
the automata completion problem.

4.1 Complexity

It can be shown that Problem 2 is PSPACE-complete. Note that this is not
surprising, as the verification problem itself is PSPACE-complete, for safety
properties of distributed protocols. However, in the special case of one process and
one environment automaton, while verification can be performed in polynomial
time, a reduction from 3-SAT shows that the corresponding completion Problem 1
is NP-complete. The proofs are omitted due to lack of space, and can be found
in [26].

Theorem 1. Problem 1 is NP-complete and Problem 2 is PSPACE-complete.
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4.2 Synthesis Algorithm

We propose an algorithm for solving the automata completion problem that can
be viewed as an instance of counter-example guided inductive synthesis [2]. At
a high-level the algorithm works by maintaining a set of constraints on correct
completions. The algorithm repeatedly chooses a candidate completion such that
it satisfies these constraints. If this candidate completion satisfies the correctness
requirements, the algorithm terminates. Otherwise, the information from the
violation of the requirements is used to create more constraints on the set of
correct completions and prune the search space.

We associate a Boolean variable with every candidate transition that can be
added to the individual automata. The constraints maintained by the algorithm
are propositional formulas over these transition variables. We initialize the
constraint set with determinism and deadlock constraints. The first enforce that
the protocol automata are deterministic, as described in subsection 3.1. For the
second, we explore the reachable state space of the product of the environment
and incomplete process automata; for every deadlock state, we add constraints
that guarantee that at least one transition will be enabled out of that state. In
the remainder of this section we will use ti to refer both to transitions and their
corresponding Boolean variables.

At the beginning of every iteration, a constraint solver — an ILP solver in
our implementation — produces an assignment to the transition variables such
the assignment satisfies the constraints. If the constraints are unsatisfiable, the
algorithm concludes that no solution is possible and terminates. Otherwise, we
translate the assignment to a set of transitions T , such that for every transition
variable that the assignment sets to true, the corresponding transition is in T . Let
T = {t1, . . . , tn}. We complete the process automata with T , form their product
with the environment automata, and monitors, and we check the absence of
deadlocks, safety, and liveness violations using a model checker. The following
cases are possible:

1. No violations are found. In this case, T is a correct completion, and the
algorithm terminates.

2. A safety violation is found. This case means that the candidate solution T is
incorrect. Moreover, any candidate T ′ obtained by adding extra transitions to
T , i.e., T ′ ⊇ T , will also be incorrect, because adding extra local transitions
can only add, but not remove, global transitions. This in turn implies that
any reachable error state with T will also be a reachable error state with
T ′, so any safety violation with T will also be a safety violation with T ′. To
enforce that no superset of T is included in any future candidate set, we add
the formula ¬(t1 ∧ t2 ∧ . . . ∧ tn) to the constraint set.

3. A liveness violation is found. This case also means that the candidate solution
T is incorrect. A liveness violation, according to the definition of the problem 2,
corresponds to a fair infinite accepting run, represented by a reachable cycle,
that contains an accepting state of a liveness monitor. Although adding
more transitions cannot eliminate the cycle, it is possible that additional
transitions can render a fair run unfair: if a particular output o ∈ Of
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was not enabled in the cycle, then adding local transitions can cause o to
become enabled. Let T ′ = {t′1, . . . , t′m} be the set of transitions that, if added,
would make the infinite run unfair.6 We add as a constraint the formula
¬(t1 ∧ t2 ∧ . . . ∧ tn) ∨ (t′1 ∨ t′2 ∨ . . . ∨ t′m). The constraint guarantees that in
all future candidate sets, the cycle will be unreachable, broken, or not fair.

4. A deadlock state is found. In this case, T is also incorrect, but could potentially
be made correct by adding more transitions. Let T ′ = {t′1, . . . , t′m} be the
set of candidate transitions such that, if any transition in T ′ is added,
a transition is enabled out of the deadlock state. We add the constraint
(t1 ∧ . . . ∧ tn)→ (t′1 ∨ . . . ∨ t′m).

In every iteration, either a correct completion is found or the search space is
pruned. We use an ILP solver to generate candidate sets from the constraints
with an objective function that minimizes the size of the candidate set. In that
way, in each iteration, we examine the smallest set of transitions that satisfies
the constraints. This keeps the size of the product of the automata small and
allows for faster checking of the properties.

We employ the following heuristic to prune the search space faster. Assume
that a candidate set T = {t1, . . . , tn} is tested in an iteration of the algorithm
and a safety violation is discovered. As described so far, the algorithm will remove
all supersets of T from the search space by adding the constraint ¬(t1 ∧ . . . ∧ tn).
However, if the safety violation is reachable by using only a subset of T , T ′′,
then it is safe to also remove all supersets of T ′′ from the search space. Ideally,
one would find all minimal subsets of T that alone can lead to a violation and
remove all supersets of them. We approximate this by finding a minimal path to
a safety violation using breadth-first search. If the path contains a subset of the
transitions in T , we remove all supersets of that subset from the search space.

5 Evaluation

In this section we evaluate the effectiveness of scenarios and our methodology for
specifying finite-state protocols. We use three benchmarks: the ABP protocol,
a cache coherence protocol, and a consensus protocol. We first check whether
the corresponding scenarios result in incomplete automata that cover all the
states of a desired implementation. We then evaluate our synthesis algorithm on
those benchmarks and investigate the effectiveness of scenarios in reducing the
empirical complexity of the automata completion problem. Lastly, we discuss
the interaction between the number of scenarios used to construct the initial
incomplete automata and the number of requirements that are necessary to
synthesize a correct protocol. A quantitative summary of our experiments can
be found in Table 1. Each row corresponds to a combination of benchmark and
set of input scenarios used for that benchmark, column “time” shows the total
time that the synthesis algorithm took to find a correct completion, column “#

6 For simplicity, we assume that process automata only communicate with environment
automata. The constraint for the general case is more complicated but conceptually
similar.
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Fig. 6. Scenarios for the VI protocol

iterations” shows the number of iterations of the algorithm, i.e., the number of
candidate sets of transitions tested, and “# candidate transitions” is the total
number of candidate transitions for all process automata. Note that this last
number, n, represents individual local transitions and not number of candidate
completions. The size of the space of all possible completions is the number of
subsets of the set of candidate transitions, i.e., 2n.

5.1 Benchmarks

ABP This protocol was described in Section 2. We use different sets of input
scenarios to create three versions of this benchmark. ABP1 used only the first
scenario of Figure 2 to construct the incomplete automata, ABP2 used the second
scenario, while ABP1-4 used all four scenarios.

We also construct a variation of the protocol that allows the clients to send
different types of messages. In the protocol described in Section 2, only one type
of message can be sent and received. In experiments ABPcolored1, ABPcolored2,
and ABPcolored1-4, there are two types of messages that can be sent and received
representing the different data that messages could carry.

VI protocol The VI protocol is a protocol for maintaining coherence among the
private caches of a multi-processor system. The coherence requirement is that the
value read by any processor is the same as the last value written to that location
by any processor in the system. The scenarios shown in Figure 6 describe the
working of the protocol. In the first scenario, Cache 1 acquires permissions to
read or write to the cache block from the directory when no other processor in
the system has permissions on the block. The second scenario demonstrates how
a directory invalidates a cache that already has permissions on a block to fulfill
the request of another cache for the block. These scenarios do not describe the
behavior of the protocol when the second and third scenarios are interleaved, i.e.,
Cache 1 relinquishing permissions while Cache 2 attempts to acquire permissions.

We examine two variations of the VI protocol: one where there is a unique
value for the data, in which case the protocol reduces to a distributed locking
protocol (VI-no-data), and one where the data can take values 0 or 1, which
captures the essence of the VI cache coherence protocol (VI).

Consensus In this problem we specify a protocol that describes how two
processes can reach consensus on one value. Each process chooses initially a
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preferred value and then they coordinate using shared memory to decide which
of the two values to choose. The properties that the protocol has to satisfy are
agreement (the two decisions must be the same), validity (the common decision
must equal one of the preferred values), and wait-freedom (at any point, if only
one process makes progress it will be able to make a decision). It has been shown
that wait-freedom can be achieved only if a test-and-set register is used. The
test-and-set register allows a process to write a value to it and read its previous
value as an atomic operation

Figure 7 shows the scenario used for the consensus protocol. Both processes
begin by non-deterministically choosing a value, messages “Prefer0” and “Prefer1”,
then write their choices in shared registers, “Register1” and “Register2”, and
then compete on setting the common test-and-set register which is initialized with
0. In this case, Process1 succeeds, the return value of the test-and-set operation
is 0, and Process1 decides on its preferred value with message “decide0”. On
the other hand, Process2 fails, the test-and-set register returns 1, and Process2
reads the value chosen by Process1, and decides on that with messages “read0”
and “decide0”. We first attempt to synthesize the protocol starting from the
incomplete automata constructed from the “success path”, i.e., Process 1 lane
of the scenario, and the “fail path”, i.e., Process 2 lane. These two experiments
correspond to rows “Consensus-success” and “Consensus-fail” of the Table 1.
Finally, we implement a consensus protocol that does not use a test-and-set
register, row “Consensus-no-test-and-set”.

5.2 State coverage

We first observe that in all our experiments, except for “Consensus-success” and
“Consensus-no-test-and-set”, the states of the incomplete automata constructed
by the scenarios cover all states of the protocols. In the “Consensus-success”
experiment, the incomplete automaton is constructed using only the successful
path of the protocol. A large part of the protocol’s logic is missing from the input
scenario, leaving the automaton with not enough states. The synthesis algorithm
terminates and thus proves that no successful completion is possible. When we
add an extra state in the incomplete automata without any edges to or from
the rest of the states, the synthesis algorithm returns a completion that uses
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Table 1. Quantitative summary of experiments.

Benchmark time (s) # iterations # candidate transitions

ABP1 2.8 44 84

ABP2 9.9 87 172

ABP1-4 11.5 59 240

ABPcolored1 63.8 197 260

ABPcolored2 168.9 273 652

ABPcolored1-4 409.4 293 1012

VI-no-data 28.6 208 1170

VI 183.7 215 4538

Consensus-fail 0.3 5 264

Consensus-success 13.8 162 112

Consensus-success+1 21.4 163 216

Consensus-no-test-and-set 11.2 156 88

the extra state to implement the missing behavior. Row “Consensus-success+1”
corresponds to that experiment.

5.3 Generalization and inference of unspecified behaviors

In all cases where the given scenarios covered all the states of the desired imple-
mentation the synthesis algorithm terminated with a correct completion. For the
case of ABP with just one scenario specified, the algorithm successfully performs
the generalization required to obtain a correct completion. The generalization
performed is non-obvious: the correct protocol behaviors on packet loss, loss of
acknowledgments and message duplication are inferred, even though the scenario
does not describe what needs to happen in these situations. As can be seen in
Figure 8, the incomplete automata constructed from the scenario describe only
the protocol behavior over lossless channels. The algorithms are guided solely by
the liveness and safety specifications to infer the correct behavior. In contrast,
when all four scenarios are used, the scenarios already contain information about
the behavior of the protocol when a single packet loss or a single message du-
plication occurs. The algorithm thus needs to only generalize this behavior to
handle an arbitrary number of losses and duplications.

The same is true about the generalizations made by the algorithm in the
other benchmarks. Specifically, in the case of VI, the synthesis algorithm correctly
infers that in a complete protocol write-back and invalidate messages should be
treated in the same way both from the caches and from the directory. Note that
this behavior cannot be inferred by looking at caches and directory independently:
they both have to implement it for the result to be correct.

5.4 Scalability

To validate our hypothesis that scenarios make the synthesis problem easier, we
attempted to synthesize the ABP protocol with no scenarios specified, but with
bounds on the number of states of the processes. These bounds were set to be
equal to the corresponding number of states in the manually constructed version
of the ABP protocol. We required that the protocol satisfy all the properties
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discussed in Section 2. The synthesis algorithm ran out of time with no correct
completion with a timeout of thirty minutes.

5.5 Scenarios and requirements

We observed that when fewer scenarios were used we needed to specify more
properties — some of which were non-obvious — so that the algorithms could
converge to a correct completion. For instance, when only one scenario was
specified, we needed to include the liveness property that every deliver message was
eventually followed by a send message. Owing to the structure of the incomplete
automata, this property was not necessary to obtain a correct completion when
all four scenarios were specified. Another property which was necessary to reject
trivial completions when no scenarios were specified was that there has to be at
least one send message in every run. Therefore, in some cases, using scenarios
can compensate for the lack of detailed formal specifications.

6 Conclusions

The main contribution of this paper is a new methodology, supported by an au-
tomatic synthesis technique, for specifying finite-state distributed protocols using
a mix of representative behaviors and correctness requirements. The synthesizer
derives a skeleton of the state machine for each process using the states that
appear in the scenarios and then finds a completion that satisfies the require-
ments. The promise of the proposed method is demonstrated by the ability of the
synthesis algorithm to learn the correct ABP protocol from just a single scenario
corresponding to the typical case. We would like to look at protocols that are
best described using extended FSM with variables, such as more advanced cache-
coherence protocols. In such cases, it will be necessary to synthesize symbolic
guards and updates for each transition, see for example [24].
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